Visitor from interstellar space

Visitor from interstellar space

By now I hope you’re heard about the interstellar interloper that’s been passing through the inner solar system recently. This asteroid, which has been named ‘Oumuamua, is the first-ever discovered object that has been observed coming into the solar system from elsewhere in the Milky Way that is larger than tiny bits of dust.

There are several known instances of objects being “ejected” out of our solar system, so periodically there should be a chance to see a passing object that has been “ejected” from some other solar system passing by us. But only objects that pass close to the Sun or those that cast their own light are bright enough to be seen.

‘Oumuamua (NASA artist’s impression)

‘Oumuamua was discovered on Oct. 19th when it was already more than a month past its closest point to the Sun. It’s only about 300 feet across, and it was close enough to Earth to be seen for a short while.

Objects passing through the solar system that aren’t gravitationally bound to the Sun must be moving very quickly, although all paths are bent around their closest point to the Sun. The eccentricity of an elliptical orbit around the Sun is represented in the mathematical elements of the orbit by a number between zero and 1. The eccentricity of an object that is going too fast to be captured by the Sun has a value between 1 and infinity. The value in this case is about 1.2, and the object’s velocity entering the solar system was about 59,000 mph. It was probably ejected from another star many light years away and millions of years ago, although it is from the “disk” of the Milky Way and not the more exotic “halo”. A “halo” object would probably be moving faster.

‘Oumuamua’s orbit can be simulated in Starry Night Dome. The orbital elements are a little on the uncertain side because of the short duration of observations between discovery and it zipping out of range. And the effect of the over-unity eccentricity appears to “break” the position of the object during times before February 2016 or after March 2019. But the 3 years when it’s at its closest point to the Sun are replicated pretty well.

To add ‘Oumuamua to SciDome Version 7, right-click on the Sun in Starry Night Preflight and select ‘New Asteroid…’ and enter the following values in the details window that pops up, using the ‘Pericentric’ method instead of ‘Near-Circular.’ Also pick an appropriate name in the ‘Untitled’ field.

E=1.1993471
Q=0.2552817
Node=24.5994750
W=241.6917568
I=122.6813370
Tp=2458005.98918377
Epoch=2458056.5

Once you close this details window and “keep” the new object, and quit SciDome properly, the new object will be written to a file called “User Planets.ssd”. You need to copy this file from its location on Preflight to the Renderbox for it to be “live” on both computers.

c:\Users\Spitz\AppData\Local\Simulation Curriculum\Starry Night Prefs\Preflight\User Planets.ssd

This file needs to be copied and installed on the Renderbox at the comparable folder location:

c:\Users\Spitz\AppData\Local\Simulation Curriculum\Starry Night Prefs\Renderbox\User Planets.ssd

Please contact me if you need a little extra guidance on making this work. After this is done, the object should be “live” in Starry Night on the dome during the current “Now”.

You can also fly out to the object and watch the planets and the Sun fly by as its lumpy asteroid shape zooms past. I would recommend one special piece of orientation for objects like this. During SciDome training, one of the choices we emphasize when looking at a solar system object from above is that you can “Rotate With” or “Hover Over” the planet or moon below. If you “Rotate With” while looking down at the United States, and speed up time, the Earth won’t appear to rotate, you can see successive nightfalls and daybreaks over North America, and the background stars will rotate around in the background. If you “Hover Over”, as time passes North America will rotate away to the east, Asia will appear out of the west and the fixed stars won’t move. The Sun Angle won’t change much either.

There is a third option in the dropdown menu that allows you to choose “Rotate With” or “Hover Over”, which is very much like “Hover Over” but not quite. It’s called “Follow in Orbit.” The small difference between “Hover Over” and “Follow in Orbit” is that “Follow in Orbit” will maintain the phase of illumination by the Sun as the planet orbits the Sun, and the fixed stars will slowly sweep by although the Sun Angle won’t change as time passes. “Hover Over” is completely inertial – as the planet orbits the Sun, the phase of the Sun Angle will slowly change and only the fixed stars will stay fixed.

We don’t always drill down far enough to distinguish between “Hover Over” and “Follow in Orbit” because it takes more than a month of time flow to accumulate a 30° difference between the two. But in the case of ‘Oumuamua, because its position with respect to the Sun changes so quickly, you might want a way to keep the Sun Angle constant so the source of illumination won’t rotate away from your point of view and you “lose the light”. “Follow in Orbit” is a useful orientation choice for an object like this.

A little bit of hay has been made of the way the incoming path of ‘Oumuamua leads back towards the constellation Lyra. This can also be simulated in Starry Night. The brightest star in Lyra is Vega, which was the fictional location of the first extraterrestrial signals in the Carl Sagan novel Contact. Sagan may have picked Vega to use in his book because it has been known for some time that the motion of the Sun and the solar system through the Milky Way is in the general direction of that star.

The great American/Canadian astronomer Simon Newcomb wrote in Elements of Astronomy – a book Sagan would have known – “The motion of our solar system toward the constellation Lyra is one of the most wonderful conclusions of modern astronomy.” However, as we move in the direction of that constellation, Lyra and the other stars in it have their own movements that will scramble them all out in other directions as time passes.

The proper motions of the stars can also be turned on in Starry Night as a series of artificial lines, and simulated back and forth through a couple of hundred thousand years of movement centered on the present if you switch to a “Stationary Location.” These proper motions may appear random, but if you highlight some of the closest and most well-known nearby stars, you can track them moving away from or toward the direction of Lyra as time passes forward or backward with some coherence.

Great Comet of 1811 (1812?)

Great Comet of 1811 (1812?)

Great Comet of 1811 as drawn by William Henry Smyth

The May issue of Sky and Telescope magazine has a timely item about “Napoleon’s Comets”. The most important of these was the Great Comet of 1811, which was the brightest comet with the longest duration of brightness on record (260 days) until Comet Hale-Bopp shattered that record in 1997.

It is referred to as “Napoleon’s Comet” because of the Napoleonic Wars and the impending War of 1812, in which the United States was allied with France, Germany and Austria against Britain, Spain, Portugal, and Russia. The wars are the backdrop for the novel War and Peace by Tolstoy, and also the newly Tony-award-nominated Broadway musical Natasha, Pierre and the Great Comet of 1812 based on a small part of the novel.

The Comet of 1811 was discovered in March of that year in what is now the constellation Puppis, and it was very bright in the evening sky in September and lingered for the rest of that year. The head and coma of the comet was reported to be wider than the diameter of the Sun and it had a very long, bright tail despite not coming very close to the Earth. The Comet was held to be responsible for unusually fine vintages of French wines harvested from the Autumn 1811 grape harvest, and it is possible that Napoleon was influenced in his decision to invade Russia in June 1812 if he thought of the comet as a portent of victory.

In the US midwest, the Comet was visible during the New Madrid Earthquakes in December 1811. The Shawnee leader Tecumseh, who was born in the year of the Comet of 1769 and was named accordingly, invoked the Comet of 1811 as he built a confederacy of tribes which allied with the British in the War of 1812.

The Comet of 1811 is only mentioned on one page at the conclusion of the first half of War and Peace, but it’s misnamed the Comet of 1812. Accordingly, although the musical is titled Natasha, Pierre & the Great Comet of 1812, the Comet only appears in the finalé and is not depicted in the publicity for the production. You have to go and see it for yourself. Dave Malloy, the creator of the show, says the Comet nevertheless got into the title of the show “for cosmic epicness”.

The Broadway production this year has been nominated for 12 Tony awards, so I can’t imagine it not being talked about in planetariums.

SciDome Implementation

You can add the orbit of the Great Comet of 1811 to your SciDome by right-clicking on the Sun in Starry Night Dome Preflight and selecting “New Comet…” In the orbit specification window that pops up, enter the following values:

Name: Great Comet of 1811
Eccentricity: 0.9951250
Pericentre distance: 1.0354120
Ascending node: 143.0497000
Arg of pericentre: 65.4097000
Inclination: 106.9342000
Pericentre time: 2382768.2562000
Elements epoch: 2382760.5

And in the “Other Settings” tab, change the Diameter to 40 km and change the Absolute magnitude to 0.
“X” out of the new orbit window and confirm you want the changes to be saved. Then quit out of Starry Night properly.

If you are using Starry Night Dome version 6, the comet will be loaded on to the Renderbox when Starry Night is properly exited and will be available the next time the application is started. Because it is a user-created object, though, it will be automatically “hidden” until you uncheck it in the “Hide” column of the Find Pane. Then you can save some favourites showing the sky in the year 1811 featuring it for later playback.

If you are using Starry Night Dome 7, the comet will be saved into a file named User Planets.ssd in the Preflight folder:

C:\Users\Spitz\AppData\Local\Simulation Curriculum\Starry Night Prefs\Preflight

And that file will need to be manually ported over to the corresponding location on the Renderbox. Future versions of Starry Night Dome V7 will make this process automatic.